Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 892
Filtrar
1.
Heliyon ; 10(7): e28464, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571591

RESUMO

Metschnikowia persimmonesis, a novel endophytic yeast strain isolated from Diospyros kaki calyx, possesses strong antimicrobial activity. We investigated its potential use as an environmentally safe food biocontrol agent through genomics, transcriptomics, and metabolomics. Secondary metabolites were isolated from M. persimmonesis, followed by chemical structure elucidation, PUL gene cluster identification, and RNA sequencing. Pulcherrimin was isolated using 2 M NaOH, its structure was confirmed, and the yield was quantified. Biocontrol efficacy of M. persimmonesis on persimmon fruits and calyx was evaluated by assessing lesion diameter and disease incidence. Following compounds were isolated from M. persimmonesis co-culture with Botrytis cinerea and Fusarium oxysporum: fusaric acid, benzoic acid, benzeneacetic acid, 4-hydroxybenzeneacetic acid, 4-(-2-hydoxyethyl)-benzoic acid, cyclo (Leu-Leu), benzenemethanol, 4-hydroxy-benzaldehide, 2-hydroxy-4-methoxy-benzoic acid, 4-hydroxy-benzoic acid, lumichrome, heptadecanoic acid, and nonadecanoic acid. Exposing M. persimmonesis to different growth media conditions (with or without sugar) resulted in the isolation of five compounds: Tyrosol, Cyclo (Pro-Val), cyclo(L-Pro-L-Tyr), cyclo(Leu-Leu), and cyclo(l-tyrosilylicine). Differentially expressed gene analysis revealed 3264 genes that were significantly expressed (fold change ≥2 and p-value ≤0.05) during M. persimmonesis growth in different media, of which only 270 (8.27%) showed altered expression in all sample combinations with Luria-Bertani Agar as control. Minimal media with ferric ions and tween-80 triggered the most gene expression changes, with the highest levels of PUL gene expression and pulcherrimin yield (262.166 mg/L) among all media treatments. M. persimmonesis also produced a higher amount of pulcherrimin (209.733 mg/L) than Metschnikowia pulcherrima (152.8 mg/L). M. persimmonesis inhibited the growth of Fusarium oxysporum in persimmon fruit and calyx. Toxicity evaluation of M. persimmonesis extracts showed no harmful effects on the liver and mitochondria of zebrafish, and no potential risk of cardiotoxicity in hERG-HEK293 cell lines. Thus, M. persimmonesis can be commercialized as a potent and safe biocontrol agent for preserving food products.

2.
Environ Health Insights ; 18: 11786302241245057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596430

RESUMO

Background: In Ethiopia, domestic animals and their feces are not properly contained. However, the risk of exposure to zoonotic pathogens is not well documented. This study was conducted to assess animal handling practices and the risk of childhood diarrhea among rural households in northwest Ethiopia. Methods: This study was done among 403 randomly selected households. Information on animal handling was collected using a questionnaire and spot-check observation. The occurrence of childhood diarrhea in 14 days prior to the survey was assessed based on the reports of female head of households. Multivariable binary logistic regression analysis was performed to identify the association between animal handling practices and childhood diarrhea. Results: All the female head of households had contact with animal feces when preparing fuel disks and plastering the house components with animal dung. Domestic animals shared a corral within the living space of the humans in 20% of the households. Animals entered the human living quarters and accessed foods in 32% of the households. Moreover, 24% of the children aged 24 to 59 months had diarrhea in a 2-week period prior to the survey. Childhood diarrhea was associated with domestic animals sharing the same house as humans (AOR: 3.3, 95% CI: 1.3, 8.6), presence of animal excreta in child playing areas (AOR: 2.4, 95% CI: 1.2, 4.6), contact of domestic animals with stored foods (AOR: 3.5, 95% CI: 2.0, 5.9), trapped dirt under fingernails of female heads (AOR: 3.7, 95% CI: 1.9, 7.5), open defecation (AOR: 3.24, 95% CI: 1.8, 5.9), and unprotected sources (AOR: 4.2, 95% CI: 1.1, 15.3). Conclusion: Domestic animals and their excreta are not hygienically contained in the area. Animal handling practices including their excreta and the hygiene behavior of female head of households (eg, handwashing and food handling practices) should be improved to prevent childhood diarrhea.

3.
Asia Pac J Public Health ; : 10105395241246287, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600733

RESUMO

This study aimed to identify factors influencing compliance with social distancing, a key nonpharmaceutical intervention during the early stages of the coronavirus disease (COVID-19) pandemic. The study population comprised 182 758 Koreans who participated in the 2020 Community Health Survey. Personal characteristics were classified into sociodemographic, health behavioral, and psychosocial factors, and factors associated with social distancing compliance were identified. Health behaviors and psychosocial factors were highly related to compliance with social distancing. Approximately 13% of smokers were less likely to practice physical distancing and 50% of high-risk drinkers were less likely to limit going out or attending gatherings and events. Higher concern about COVID-19 and a more positive perception of the government's response policy were associated with a higher compliance with social distancing. Strategic public health policies considering the characteristics of the public are needed to enhance compliance with nonpharmaceutical interventions during disease outbreaks lacking effective treatments and vaccines.

4.
J Appl Toxicol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594832

RESUMO

L-tryptophan, an essential amino acid for physiological processes, metabolism, development, and growth of organisms, is widely utilized in animal nutrition and human health as a feed additive and nutritional supplement, respectively. Despite its known benefits, safety concerns have arisen due to an eosinophilia-myalgia syndrome (EMS) outbreak linked to L-tryptophan consumed by humans. Extensive research has established that the EMS outbreak was caused by an L-tryptophan product that contained certain impurities. Therefore, safety validations are imperative to endorse the use of L-tryptophan as a supplement or a feed additive. This study was conducted in tertiary hybrid [(Landrace × Yorkshire) × Duroc] pigs to assess general toxicity and potential risks for EMS-related symptoms associated with L-tryptophan used as a feed additive. Our investigation elucidated the relationship between L-tryptophan and EMS in swine. No mortalities or clinical signs were observed in any animals during the administration period, and the test substance did not induce toxic effects. Hematological analysis and histopathological examination revealed no changes in EMS-related parameters, such as eosinophil counts, lung lesions, skin lesions, or muscle atrophy. Furthermore, no test substance-related changes occurred in other general toxicological parameters. Through analyzing the tissues and organs of swine, most of the L-tryptophan impurities that may cause EMS were not retained. Based on these findings, we concluded that incorporating L-tryptophan and its impurities into the diet does not induce EMS in swine. Consequently, L-tryptophan may be used as a feed additive throughout all growth stages of swine without safety concerns.

5.
Lancet Glob Health ; 12(5): e826-e837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614631

RESUMO

BACKGROUND: In October, 2017, WHO launched a strategy to eliminate cholera by 2030. A primary challenge in meeting this goal is the limited global supply capacity of oral cholera vaccine and the worsening of cholera outbreaks since 2021. To help address the current shortage of oral cholera vaccine, a WHO prequalified oral cholera vaccine, Euvichol-Plus was reformulated by reducing the number of components and inactivation methods. We aimed to evaluate the immunogenicity and safety of Euvichol-S (EuBiologics, Seoul, South Korea) compared with an active control vaccine, Shanchol (Sanofi Healthcare India, Telangana, India) in participants of various ages in Nepal. METHODS: We did an observer-blind, active-controlled, randomised, non-inferiority, phase 3 trial at four hospitals in Nepal. Eligible participants were healthy individuals aged 1-40 years without a history of cholera vaccination. Individuals with a history of hypersensitivity reactions to other preventive vaccines, severe chronic disease, previous cholera vaccination, receipt of blood or blood-derived products in the past 3 months or other vaccine within 4 weeks before enrolment, and pregnant or lactating women were excluded. Participants were randomly assigned (1:1:1:1) by block randomisation (block sizes of two, four, six, or eight) to one of four groups (groups A-D); groups C and D were stratified by age (1-5, 6-17, and 18-40 years). Participants in groups A-C were assigned to receive two 1·5 mL doses of Euvichol-S (three different lots) and participants in group D were assigned to receive the active control vaccine, Shanchol. All participants and site staff (with the exception of those who prepared and administered the study vaccines) were masked to group assignment. The primary immunogenicity endpoint was non-inferiority of immunogenicity of Euvichol-S (group C) versus Shanchol (group D) at 2 weeks after the second vaccine dose, measured by the seroconversion rate, defined as the proportion of participants who had achieved seroconversion (defined as ≥four-fold increase in V cholerae O1 Inaba and Ogawa titres compared with baseline). The primary immunogenicity endpoint was assessed in the per-protocol analysis set, which included all participants who received all their planned vaccine administrations, had no important protocol deviations, and who provided blood samples for all immunogenicity assessments. The primary safety endpoint was the number of solicited adverse events, unsolicited adverse events, and serious adverse events after each vaccine dose in all ages and each age stratum, assessed in all participants who received at least one dose of the Euvichol-S or Shanchol. Non-inferiority of Euvichol-S compared with Shanchol was shown if the lower limit of the 95% CI for the difference between the seroconversion rates in Euvichol-S group C versus Shanchol group D was above the predefined non-inferiority margin of -10%. The trial was registered at ClinicalTrials.gov, NCT04760236. FINDINGS: Between Oct 6, 2021, and Jan 19, 2022, 2529 healthy participants (1261 [49·9%] males; 1268 [50·1%] females), were randomly assigned to group A (n=330; Euvichol-S lot number ES-2002), group B (n=331; Euvichol-S ES-2003), group C (n=934; Euvichol-S ES-2004]), or group D (n=934; Shanchol). Non-inferiority of Euvichol-S versus Shanchol in seroconversion rate for both serotypes at 2 weeks after the second dose was confirmed in all ages (difference in seroconversion rate for V cholerae O1 Inaba -0·00 [95% CI -1·86 to 1·86]; for V cholerae O1 Ogawa -1·62 [-4·80 to 1·56]). Treatment-emergent adverse events were reported in 244 (9·7%) of 2529 participants in the safety analysis set, with a total of 403 events; 247 events were reported among 151 (9·5%) of 1595 Euvichol-S recipients and 156 events among 93 (10·0%) of 934 Shanchol recipients. Pyrexia was the most common adverse event in both groups (57 events among 56 [3·5%] of 1595 Euvichol-S recipients and 37 events among 35 [3·7%] of 934 Shanchol recipients). No serious adverse events were deemed to be vaccine-related. INTERPRETATION: A two-dose regimen of Euvichol-S vaccine was non-inferior to the active control vaccine, Shanchol, in terms of seroconversion rates 2 weeks after the second dose. The simplified formulation and production requirements of the Euvichol-S vaccine have the potential to increase the supply of oral cholera vaccine and reduce the gap between the current oral cholera vaccine supply and demand. FUNDING: The Bill & Melinda Gates Foundation. TRANSLATION: For the Nepali translation of the abstract see Supplementary Materials section.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae O1 , Masculino , Gravidez , Feminino , Humanos , Cólera/prevenção & controle , Vacinas contra Cólera/efeitos adversos , Nepal/epidemiologia , Lactação
6.
J Microbiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587591

RESUMO

The proliferation of harmful cyanobacterial blooms dominated by Microcystis aeruginosa has become an increasingly serious problem in freshwater ecosystems due to climate change and eutrophication. Microcystis-blooms in freshwater generate compounds with unpleasant odors, reduce the levels of dissolved O2, and excrete microcystins into aquatic ecosystems, potentially harming various organisms, including humans. Various chemical and biological approaches have thus been developed to mitigate the impact of the blooms, though issues such as secondary pollution and high economic costs have not been adequately addressed. Red clays and H2O2 are conventional treatment methods that have been employed worldwide for the mitigation of the blooms, while novel approaches, such as the use of plant or microbial metabolites and antagonistic bacteria, have also recently been proposed. Many of these methods rely on the generation of reactive oxygen species, the inhibition of photosynthesis, and/or the disruption of cellular membranes as their mechanisms of action, which may also negatively impact other freshwater microbiota. Nevertheless, the underlying molecular mechanisms of anticyanobacterial chemicals and antagonistic bacteria remain unclear. This review thus discusses both conventional and innovative approaches for the management of M. aeruginosa in freshwater bodies.

7.
Diabetes Metab J ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514922

RESUMO

Histone deacetylase 4 (HDAC4), a class IIa HDAC, has gained attention as a potential therapeutic target in treating inflammatory and metabolic processes based on its essential role in various biological pathways by deacetylating non-histone proteins, including transcription factors. The activity of HDAC4 is regulated at the transcriptional, post-transcriptional, and post-translational levels. The functions of HDAC4 are tissue-dependent in response to endogenous and exogenous factors and their substrates. In particular, the association of HDAC4 with non-histone targets, including transcription factors, such as myocyte enhancer factor 2, hypoxia-inducible factor, signal transducer and activator of transcription 1, and forkhead box proteins, play a crucial role in regulating inflammatory and metabolic processes. This review summarizes the regulatory modes of HDAC4 activity and its functions in inflammation, insulin signaling and glucose metabolism, and cardiac muscle development.

8.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464060

RESUMO

Vascular inflammation critically regulates endothelial cell (EC) pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulation of lysosomal activity and cholesterol metabolism have known inflammatory roles in disease, but their relevance to PAH is unclear. In human pulmonary arterial ECs and in PAH, we found that inflammatory cytokine induction of the nuclear receptor coactivator 7 (NCOA7) both preserved lysosomal acidification and served as a homeostatic brake to constrain EC immunoactivation. Conversely, NCOA7 deficiency promoted lysosomal dysfunction and proinflammatory oxysterol/bile acid generation that, in turn, contributed to EC pathophenotypes. In vivo, mice deficient for Ncoa7 or exposed to the inflammatory bile acid 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) displayed worsened PAH. Emphasizing this mechanism in human PAH, an unbiased, metabolome-wide association study (N=2,756) identified a plasma signature of the same NCOA7-dependent oxysterols/bile acids associated with PAH mortality (P<1.1x10-6). Supporting a genetic predisposition to NCOA7 deficiency, in genome-edited, stem cell-derived ECs, the common variant intronic SNP rs11154337 in NCOA7 regulated NCOA7 expression, lysosomal activity, oxysterol/bile acid production, and EC immunoactivation. Correspondingly, SNP rs11154337 was associated with PAH severity via six-minute walk distance and mortality in discovery (N=93, P=0.0250; HR=0.44, 95% CI [0.21-0.90]) and validation (N=630, P=2x10-4; HR=0.49, 95% CI [0.34-0.71]) cohorts. Finally, utilizing computational modeling of small molecule binding to NCOA7, we predicted and synthesized a novel activator of NCOA7 that prevented EC immunoactivation and reversed indices of rodent PAH. In summary, we have established a genetic and metabolic paradigm and a novel therapeutic agent that links lysosomal biology as well as oxysterol and bile acid processes to EC inflammation and PAH pathobiology. This paradigm carries broad implications for diagnostic and therapeutic development in PAH and in other conditions dependent upon acquired and innate immune regulation of vascular disease.

9.
PLoS Pathog ; 20(3): e1012079, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466743

RESUMO

Macrophages can undergo M1-like proinflammatory polarization with low oxidative phosphorylation (OXPHOS) and high glycolytic activities or M2-like anti-inflammatory polarization with the opposite metabolic activities. Here we show that M1-like macrophages induced by hepatitis B virus (HBV) display high OXPHOS and low glycolytic activities. This atypical metabolism induced by HBV attenuates the antiviral response of M1-like macrophages and is mediated by HBV e antigen (HBeAg), which induces death receptor 5 (DR5) via toll-like receptor 4 (TLR4) to induce death-associated protein 3 (DAP3). DAP3 then induces the expression of mitochondrial genes to promote OXPHOS. HBeAg also enhances the expression of glutaminases and increases the level of glutamate, which is converted to α-ketoglutarate, an important metabolic intermediate of the tricarboxylic acid cycle, to promote OXPHOS. The induction of DR5 by HBeAg leads to apoptosis of M1-like and M2-like macrophages, although HBeAg also induces pyroptosis of the former. These findings reveal novel activities of HBeAg, which can reprogram mitochondrial metabolism and trigger different programmed cell death responses of macrophages depending on their phenotypes to promote HBV persistence.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Macrófagos/metabolismo , Apoptose
10.
Br J Pain ; 18(2): 110-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38545502

RESUMO

Background: Intrathecal Drug Delivery Systems (IDDS) are underused in the management of cancer-related pain despite evidence of both efficacy and survival benefit. There is currently limited evidence to indicate which patients might benefit most from IDDS. Aim: The aim of the study was to describe the baseline characteristics and survival outcomes of patients who accepted IDDS, patients who declined IDDS and patients who wished to go ahead with IDDS but whose condition deteriorated before they could do so. Design/participants: The survival data for 75 consecutive patients who had been offered intrathecal drug delivery were examined as part of a retrospective cohort study. Survival data was compared between three groups: those who accepted intrathecal drug delivery and went on to receive it (n = 41), those who accepted it but whose condition deteriorated before it commenced (n = 17) and those who declined this treatment modality (n = 17). Results: Patients who received IDDS survived significantly longer after assessment compared to those who declined IDDS (hazard ratio (HR) for the IDDS group relative to the declined group 0.29 (95% CI 0.16 to 0.53), and 0.23 (95% CI 0.12 to 0.44) after adjustment for gender and baseline functional status. In patients who accepted IDDS but who were unable to commence treatment, survival after assessment was not significantly different from those who declined the IDDS (HR for the deteriorated group relative to the declined group 1.28 (95% CI 0.65 to 2.53), and 0.80 (95% CI 0.65 to 2.53) after adjustment for gender and baseline functional status). Conclusion: In this retrospective analysis, an improvement in survival may be associated with patients who accept ongoing pain management with an implanted intrathecal drug delivery system compared to those patients who either declined intrathecal drug delivery or deteriorated before it could be commenced.

11.
Zookeys ; 1193: 19-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455093

RESUMO

The genus Parens comprises small moths, with a wingspan of 9-13 mm, belonging to the family Erebidae. Until now, only four species have been described worldwide. In Korea, only one species, P.occi (Fibiger & Kononenko, 2008) has been known to date. In this study, a new species from Korea, P.fibigerina Lee & Byun, sp. nov., is described. As a result, two Parens species are now known from Korea. Figures of adults, male and female genitalia, and a key to the species of Parens in Korea are provided.

12.
Plant Physiol Biochem ; 207: 108415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324955

RESUMO

Salinization of land is globally increasing due to climate change, and salinity stress is an important abiotic stressor that adversely affects agricultural productivity. In this study, we assessed a halotolerant endophytic bacterium, Pseudoxanthomonas sp. JBR18, for its potential as a plant growth-promoting agent with multiple beneficial properties. The strain exhibited tolerance to sodium chloride concentration of up to 7.5 % in the R2A medium. In vitro evaluation revealed that strain JBR18 possessed proteolytic, protease (EC 3.4), and cellulase (EC 3.2.1.4) activities, as well as the ability to produce indole-acetic acid, proline, and exopolysaccharides. Compared with the controls, co-cultivation of Arabidopsis seedlings with the strain JBR18 improved plant growth, rosette size, shoot and root fresh weight, and chlorophyll content under salinity stress. Moreover, JBR18-inoculated seedlings showed lower levels of malondialdehyde, reactive oxygen species, and Na+ uptake into plant cells under salt stress but higher levels of K+. Additionally, seedlings inoculated with JBR18 exhibited a delayed response time and quantity of salt-responsive genes RD29A, RD29B, RD20, RD22, and KIN1 under salt stress. These multiple effects suggest that Pseudoxanthomonas sp. JBR18 is a promising candidate for mitigating the negative impacts of salinity stress on plant growth. Our findings may assist in future efforts to develop eco-friendly strategies for managing abiotic stress and enhancing plant tolerance to salt stress.


Assuntos
Arabidopsis , Plântula , Plântula/fisiologia , Arabidopsis/genética , Tolerância ao Sal , Bactérias , Estresse Fisiológico/genética
13.
PLoS One ; 19(2): e0298815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363779

RESUMO

OBJECTIVE: To investigate the anti-cancer efficacy of ENB101-LNP, an ionizable lipid nanoparticles (LNPs) encapsulating siRNA against E6/E7 of HPV 16, in combination therapy with cisplatin in cervical cancer in vitro and in vivo. METHODS: CaSki cells were treated with ENB101-LNP, cisplatin, or combination. Cell viability assessed the cytotoxicity of the treatment. HPV16 E6/E7 gene knockdown was verified with RT-PCR both in vitro and in vivo. HLA class I and PD-L1 were checked by flow cytometry. A xenograft model was made using CaSki cells in BALB/c nude mice. To evaluate anticancer efficacy, mice were grouped. ENB101-LNP was given three times weekly for 3 weeks intravenously, and cisplatin was given once weekly intraperitoneally. Tumor growth was monitored. On day 25, mice were euthanized; tumors were collected, weighed, and imaged. Tumor samples were analyzed through histopathology, immunostaining, and western blot. RESULTS: ENB101-LNP and cisplatin synergistically inhibit CaSki cell growth. The combination reduces HPV 16 E6/E7 mRNA and boosts p21 mRNA, p53, p21, and HLA class I proteins. In mice, the treatment significantly blocked tumor growth and promoted apoptosis. Tumor inhibition rates were 29.7% (1 mpk ENB101-LNP), 29.6% (3 mpk), 34.0% (cisplatin), 47.0% (1 mpk ENB101-LNP-cisplatin), and 68.8% (3 mpk ENB101-LNP-cisplatin). RT-PCR confirmed up to 80% knockdown of HPV16 E6/E7 in the ENB101-LNP groups. Immunohistochemistry revealed increased p53, p21, and HLA-A expression with ENB101-LNP treatments, alone or combined. CONCLUSION: The combination of ENB101-LNP, which inhibits E6/E7 of HPV 16, with cisplatin, demonstrated significant anticancer activity in the xenograft mouse model of cervical cancer.


Assuntos
Lipossomos , Nanopartículas , Proteínas Oncogênicas Virais , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , RNA Interferente Pequeno/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteína Supressora de Tumor p53/genética , Camundongos Nus , Xenoenxertos , Linhagem Celular Tumoral , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , RNA Mensageiro/genética
14.
Front Immunol ; 15: 1305157, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370419

RESUMO

The interplay between autophagy and host innate immunity has been of great interest. Hepatitis C virus (HCV) impedes signaling pathways initiated by pattern-recognition receptors (PRRs) that recognize pathogens-associated molecular patterns (PAMPs). Autophagy, a cellular catabolic process, delivers damaged organelles and protein aggregates to lysosomes for degradation and recycling. Autophagy is also an innate immune response of cells to trap pathogens in membrane vesicles for removal. However, HCV controls the autophagic pathway and uses autophagic membranes to enhance its replication. Mitophagy, a selective autophagy targeting mitochondria, alters the dynamics and metabolism of mitochondria, which play important roles in host antiviral responses. HCV also alters mitochondrial dynamics and promotes mitophagy to prevent premature cell death and attenuate the interferon (IFN) response. In addition, the dysregulation of the inflammasomal response by HCV leads to IFN resistance and immune tolerance. These immune evasion properties of HCV allow HCV to successfully replicate and persist in its host cells. In this article, we discuss HCV-induced autophagy/mitophagy and its associated immunological responses and provide a review of our current understanding of how these processes are regulated in HCV-infected cells.


Assuntos
Hepacivirus , Hepatite C , Humanos , Imunidade Inata , Autofagia , Interferons/metabolismo
15.
Microbiol Spectr ; : e0276023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319091

RESUMO

Bacterial contamination of blood products poses a significant risk in transfusion medicine. Platelets are particularly vulnerable to bacterial growth because they must be stored at room temperature with constant agitation for >5 days. The limitations of bacterial detection using conventional methods, such as blood cultures and lateral flow assays, include the long detection times, low sensitivity, and the requirement for substantial volumes of blood components. To address these limitations, we assessed the performance of a bacterial enrichment technique using antibiotic-conjugated magnetic nanobeads (AcMNBs) and real-time PCR for the detection of bacterial contamination in plasma. AcMNBs successfully captured >80% of four bacterial strains, including Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Klebsiella pneumoniae, in both plasma and phosphate-buffered saline. After 24-h incubation with bacterial enrichment, S. aureus and B. cereus were each detected at 101 CFU/mL in all trials (5/5), E. coli at 101 CFU/mL in 1/5 trials, and K. pneumoniae at 10² CFU/mL in 4/5 trials. Additionally, without incubation, the improvement was also achieved in samples with bacterial enrichment, S. aureus at 10² CFU/mL and B. cereus at 101 CFU/mL in 1/5 trials each, E. coli at 10³ CFU/mL in 3/5 trials, and K. pneumoniae at 10¹ CFU/mL in 2/5 trials. Overall, the findings from this study strongly support the superiority of bacterial enrichment in detecting low-level bacterial contamination in plasma when employing AcMNBs and PCR.IMPORTANCEThe study presents a breakthrough approach to detect bacterial contamination in plasma, a critical concern in transfusion medicine. Traditional methods, such as blood cultures and lateral flow assays, are hampered by slow detection times, low sensitivity, and the need for large blood sample volumes. Our research introduces a novel technique using antibiotic-conjugated magnetic nanobeads combined with real-time PCR, enhancing the detection of bacteria in blood products, especially platelets. This method has shown exceptional efficiency in identifying even low levels of four different species of bacteria in plasma. The ability to detect bacterial contamination rapidly and accurately is vital for ensuring the safety of blood transfusions and can significantly reduce the risk of infections transmitted through blood products. This advancement is a pivotal step in improving patient outcomes and elevating the standards of care in transfusion medicine.

16.
RSC Adv ; 14(10): 7142-7156, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419681

RESUMO

Carbon nanomaterials have attracted significant attention in the biomedical field, including for biosensing, drug delivery, and tissue engineering applications. Based on their inherent properties such as their unique structure and high conductivity, carbon nanomaterials can overcome the current limitations in biomedical research such as poor stability of biomolecules, low sensitivity and selectivity of biosensors, and difficulty in precise drug delivery. In addition, recently, several novel nanomaterials have been integrated with carbon nanomaterials to develop carbon-based nanocomposites for application in biomedical research. In this review, we discuss recent studies on carbon-based nanocomposites and their biomedical applications. First, we discuss the representative carbon nanomaterials and nanocomposites composed of carbon and other novel nanomaterials. Next, applications of carbon nanomaterials and nanocomposites in the biomedical field are discussed according to topics in the biomedical field. We have discussed the recent studies on biosensors, drug delivery, and tissue engineering. In conclusion, we believe that this review provides the potential and applicability of carbon nanomaterials and their nanocomposites and suggests future directions of the application of carbon-based nanocomposites in biomedical applications.

17.
Bioethics ; 38(4): 300-307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38193512

RESUMO

In this article, I argue that various epistemic challenges associated with eating disorders (EDs) can negatively affect the care of already marginalized patient groups with various EDs. I will first outline deficiencies in our understanding of EDs-in research, healthcare settings, and beyond. I will then illustrate with examples cases where discriminatory misconceptions about what EDs are, the presentation and treatment of EDs, and who gets EDs, instantiate obstacles for the treatment of various ED patient groups.


Assuntos
Anorexia Nervosa , Bulimia Nervosa , Transtornos da Alimentação e da Ingestão de Alimentos , Humanos , Bulimia Nervosa/terapia , Conhecimento , Transtornos da Alimentação e da Ingestão de Alimentos/terapia , Assistência ao Paciente
18.
Sci Rep ; 14(1): 1038, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200134

RESUMO

The rhizosphere microbial community is closely associated with plant disease by regulating plant growth, agricultural production, nutrient availability, plant hormone and adaptation to environmental changes. Therefore, it is very important to identify the rhizosphere microbes around plant roots and understand their functions. While studying the differences between the rhizosphere microbiota of healthy and diseased apple trees to find the cause of apple tree disease, we isolated a novel strain, designated as B3-10T, from the rhizosphere soil of a healthy apple tree. The genome relatedness indices between strain B3-10T and other type species of family Chitinophagaceae were in the ranges of 62.4-67.0% for ANI, 18.6-32.1% for dDDH, and 39.0-56.6% for AAI, which were significantly below the cut­off values for the species delineation, indicating that strain B3-10T could be considered to represent a novel genus in family Chitinophagaceae. Interestingly, the complete genome of strain B3-10T contained a number of genes encoding ACC-deaminase, siderophore production, and acetoin production contributing to plant-beneficial functions. Furthermore, strain B3-10T was found to significantly promote the growth of shoots and roots of the Nicotiana benthamiana, which is widely used as a good model for plant biology, demonstrating that strain B3-10T, a rhizosphere microbe of healthy apple trees, has the potential to promote growth and reduce disease. The phenotypic, chemotaxonomic, phylogenetic, genomic, and physiological properties of this plant growth-promoting (rhizo)bacterium, strain B3-10T supported the proposal of a novel genus in the family Chitinophagaceae, for which the name Rhizosphaericola mali gen. nov., sp. nov. (= KCTC 72123T = NBRC 114178T).


Assuntos
Malus , Solo , Mali , Filogenia , Desenvolvimento Vegetal , Bacteroidetes
19.
ACS Nano ; 18(2): 1371-1380, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38060408

RESUMO

Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.


Assuntos
Filtros de Ar , Nanofibras , Humanos , Nanofibras/química , Filtração , Polímeros
20.
J Infect Chemother ; 30(4): 366-370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37935348

RESUMO

Though remdesivir benefits COVID-19 patients, its use in those with renal dysfunction is currently limited due to concerns about possible toxic effects of accumulated sulfobutylether-ß-cyclodextrin (SBECD) on liver and kidney. We examined renal and hepatic function for a month in renally-impaired COVID-19 patients who were treated or not treated with remdesivir to assess the safety of the drug. A retrospective study was performed in adult COVID-19 patients with glomerular filtration rates of <30 ml/min/1.73 m2 at admission to a tertiary care hospital between November 2020 and March 2022. Data on serum creatinine and liver chemistry were collected serially. A total of 101 patients with impaired renal function were analyzed, comprising 64 remdesivir-treated patients and 37 who did not receive any antiviral agent. Although remdesivir-treated patients were more likely to be infected with the Omicron variant (79.7% vs. 48.6%), baseline characteristics did not differ significantly between the two groups. Among patients who initially did not require dialysis, 18.4% (7/38) of remdesivir-treated patients developed acute kidney injury (AKI) at days 4-6, compared with 51.7% (15/29) of non-remdesivir-treated patients. Liver injury severity worsened in 3.1% (2/64) of remdesivir-treated patients and 5.4% (2/37) of non-remdesivir-treated patients at days 4-6. In addition, there was no significant increase in AKI and liver injury over time in remdesivir-treated patients, and there were no cases of discontinuation of remdesivir due to adverse reactions. Concerns regarding the safety of SBECD should not lead to hasty withholding of remdesivir treatment in renally-impaired COVID-19 patients.


Assuntos
Injúria Renal Aguda , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Estudos Retrospectivos , Tratamento Farmacológico da COVID-19 , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...